

Postgraduate Program

(Master Universitario II Livello)

Objectives of the Program

- To train professionals with skills in analysis, design, analytical and computer modeling, simulation, and experimental validation in the field of Multifunctional Metamaterials and Metastructures
- To address theoretical/practical issues regarding
 - Theoretical foundations of Metamaterials and Multifunctional Metastructures in various disciplines according to the physical phenomena of interest
 - Analysis techniques of artificial materials and methods for their functional and logical characterization in analytical and mathematical terms
 - Large-scale numerical modeling techniques of complex multifunctional structures, also considering their multiphysical properties, through multi-scale techniques on highperformance computing (HPC) architectures and integration of hybrid approaches based on the use of Artificial Intelligence
 - Realization, implementation, and experimental characterization in labs from a mechanical, electromagnetic, and structural viewpoint of multifunctional artificial materials
 - Cross-disciplinary applications regarding multiple relevant scenarios, including the study of metamaterials and multifunctional metastructures in the mechanical, structural, electromagnetic, energy, environmental and marine fields

Grants and Opportunities

Available grant opportunities will be announced at the following page: https://master-m3.unitn.it/grants

Admission Requirements

- Those in possession of one of the following qualifications can apply to participate in the Master in "Multifunctional Metamaterials and Metastructures": (i) old system degree; (ii) master's degree or single-cycle master's degree; (iii) foreign qualification (Master Degree), recognized as suitable according to current legislation
- Applications for participation in the Master's program should be submitted exclusively via online application by January 6, 2025
 200 (CET). More information at: https://master-m3.unitn.it/admission

The M3 Program

The Program includes a set of Standard Courses for a total of 42 ECTS (+10 ECTS of Lab Courses)

#	Standard Courses	Н	ECTS	
1	Foundations of Materials Science	15	3	2/4
2	Foundations of Electromagnetic Waves	15	3	2/4 Constrained Choice
3	Foundations of Mechanics and Acoustics	15	3	lined Cr
4	Foundations of Waveguides Propagation	15	3	loice
5	Introduction to Multi-Functional Metamaterials	15	3	
6	High-Performance Computing (HPC) for Multifunctional Metamaterials and Metastructures	15	3	
7	Random Vibrations and Uncertainty Quantification for Metamaterials	15	3	
8	Analysis and Design of Linear and Nonlinear Metastructures	15	3	
9	Dynamics and Homogenization of Periodic Metamaterials	15	3	3
10	Advanced Modeling of Exotic Metamaterials	15	3	andato
11	Hydrodynamic Metamaterials for Fluid	15	3	Viandatory Courses
12	Metasurfaces and Metamaterials for Electromagnetic Wave Manipulation	15	3	S
13	Additive Manufacturing of Metasurfaces and Metamaterials (Automation and Controls)	15	3	
14	Additive Manufacturing of Metasurfaces and Metamaterials (Technologies)	15	3	
15	Topological and Mechanical Characterization of Metamaterials	15	3	
16	Smart and Nano Metamaterials	15	3	Ī

#	Lab Courses	Н	ECTS	
1	Lab on Design-based Materials Selection	15	2	h
2	Lab on Al-based Metamaterials & Metastructures Design	15	2	
3	Lab on Additive Manufacturing of Metamaterials (Part I)	15	2	
4	Lab on Additive Manufacturing of Metamaterials (Part II)	15	2	5/1
5	Lab on Metasurface Printing/ Manufacturing	15	2	5/10 Constrained Choice
6	Lab on Deployable Metamaterials	15	2	ned C
7	Lab on Metasurfaces for Smart Electromagnetic Environment	15	2	hoice
8	Lab on HPC for Multi-Functional Metamaterials and Metastructures	15	2	
9	Lab on Advanced Computational Modeling of Mechanical Metamaterials	15	2	
10	Lab on Product Design Fundamentals	15	2	

The Courses include a combination of different teaching activities for a total of 1500 Hours

Activity Type	Hours	ECTS
Front lesson	210	
Individual Study related to frontal lessons, including Self-Assessment sessions	808	42
In-depth seminars and "hot-topic" tutorials	32	0
Lab activities (w/ Lab Coordinator)	75	
Individual Study related to laboratory lessons, including Self-Assessment sessions	175	10
Internship or Stage	150	6
Individual activity related to the Final Exam	50	2
Total	1500	60

Occupations and Fields of Activity

- Companies involved in the design, development, engineering, production, and operation of artificial materials and their applications
- Industries operating in the field of mechanical and electronic technologies for avionics and aerospace
- Industries operating in the field of civil and environmental engineering technologies, in particular in the fields of anti-seismic and acoustic, thermal, and mechanical insulation
- Industries operating in the design and development of both terrestrial and space communications and sensing systems;
- Industries operating in the field of automotive and next generation land transport systems technologies
- Companies operating in the biomedical field requiring skills for the development and use of systems based on artificial multifunctional materials
- Materials engineering companies
- Research and development centers, both public and private

Profile of the Study Program

• Degree: Postgraduate Program

(Master Universitario II Livello)

Language: English

Duration: 1 year

• Period: Jan-Dec 2025

• ECTS: 60

• Fee: 3000 Euro

Read More

• M3 Website: https://master-m3.unitn.it

DICAM Website: http://dicam.unitn.it

• DII Website: http://dii.unitn.it

• Coordinator: Prof. Andrea MASSA

(andrea.massa@unitn.it)

Platinum Sponsor Supporting Institution

